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The carbon dioxide/bicarbonate (CO2/HCO3
�) pair is the main biological pH buffer. However, its

influence on biological processes, and in particular redox processes, is still poorly explored. Here we

study the effect of CO2/HCO3
� on ischemic injury in three distinct models (cardiac HL-1 cells, perfused

rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO2/HCO3
� do

not affect function under basal conditions, ischemia–reperfusion or similar insults in the presence of

higher CO2/HCO3
� resulted in greater functional loss associated with higher oxidative damage in all

models. Because the effect of CO2/HCO3
� was observed in all models tested, we believe this buffer is an

important determinant of oxidative damage after ischemia–reperfusion.

& 2012 Elsevier Inc. All rights reserved.
Introduction

CO2, formed in a multitude of intracellular reactions, is
hydrated in a reaction catalyzed by carbonic anhydrase to
carbonic acid (H2CO3), which deprotonates, generating bicarbo-
nate (HCO3

�). The CO2/HCO3
� pair, with a pKa of 6.4, is the main

physiological buffer, due mostly to its high concentration in
biological compartments (extracellular fluid pH is �7.2 [10,14]).

Interestingly, despite its ubiquity and abundance, biological
activities of the CO2/HCO3

� pair have received very little attention,
probably because there is little ability to control concentrations
in vivo. Bicarbonate buffer, which is composed of �1.3 mM CO2

in equilibrium with 25 mM HCO3
� in serum and 14 mM HCO3

�

intracellularly, has well-demonstrated redox effects (see [23] for a
review). The first suggestion in this sense came from Hodgson and
Fridovich in 1976 [15], who reported that xanthine oxidase-
catalyzed luminescence was dependent on the presence of car-
bonate. After that, a series of studies demonstrated that the
presence of CO2/HCO3

� stimulates the oxidation, peroxidation,
ll rights reserved.
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and nitration of various biomolecules [2,3,21,24,27,34,42,43]. The
mechanism through which CO2/HCO3

� stimulates these oxida-
tions has been elucidated for peroxynitrite-mediated processes
but remains uncovered in most cases because of methodological
difficulties involving the detection of highly reactive intermedi-
ates, such as the carbonate radical (see [23] for a review).

Most studies addressing the role of CO2/HCO3
� in biological

oxidations have been exclusively conducted in in vitro or, less
commonly, in vivo systems to which oxidants were added
exogenously, promoting overt oxidative stress followed by an
evaluation of the effects of HCO3

� [10]. This still leaves open the
question if CO2/HCO3

� levels are relevant for oxidative injury
resulting from reactive oxygen species (ROS)1 generated endo-
genously in vivo under physiological or pathological conditions.
The question is highly relevant because, owing to their reactive
and diverse nature, ROS effects mostly result from localized
intracellular reactions [6,39]. In addition, quantities of added
oxidants may differ very significantly from those produced
intracellularly, even under pathological conditions. The demon-
stration that CO2/HCO3

� levels affect tissues under physiologically
relevant conditions would provide evidence, albeit indirect, of the
participation of carbonate radicals in biologically relevant pro-
cesses [23].

To address this point, we chose to study the effects of CO2/
HCO3

� in ischemia–reperfusion (IR). IR occurs in important patho-
logical conditions such as heart attack and stroke and involves a
burst in ROS production and oxidative damage, mainly during
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reperfusion, that is a determinant of the final outcome of tissue
damage [12,22,35]. Furthermore, because of the nature of these
pathologies, which involve changes in local tensions of diluted gasses
and modifications from oxidative to fermentative metabolism, CO2/
HCO3

� levels are expected to change during IR and may, thus, have an
important role in determining the extent of postischemic lesions.

The effects of CO2/HCO3
� levels on functional and oxidative

damage after IR were tested in three distinct models, under
conditions in which external pH was clamped despite the changes
in CO2/HCO3

� concentrations. Our results show that CO2/HCO3
�

levels contribute strongly toward postischemic functional loss
and oxidative damage.
Materials and methods

Materials

All chemicals were of the highest purity available from Sigma
(St. Louis, MO, USA), unless otherwise specified. BCECF was
purchased from Molecular Probes (Eugene, OR, USA). Antibody
sources are provided under Western blots.

Isolated heart perfusion

Heart perfusion was conducted as described previously [12].
Briefly, hearts were rapidly removed from male Sprague–Dawley
rats (�300 g, 2–3 months of age) and Langendorff-perfused with
oxygenated Krebs–Henseleit buffer (described below). Hearts
were eliminated from the study if the time between rat death
and the beginning of perfusion was longer than 3 min. All studies
were conducted in accordance with guidelines for animal care
and use established by the Colégio Brasileiro de Experimentac- ~ao

Animal and approved by the local animal ethics committee.
After isolation, the hearts were stabilized for 50 min and then

subjected to 30 min ischemia and 60 min reperfusion. The reper-
fusion was conducted with buffers containing 0, 5, and 10% CO2.
The buffer for 0% CO2 contained (in mmol/L) 118 NaCl, 1.2 KH2PO4,
4.7 KCl, 1.2 MgSO4, 1.25 CaCl2, 10 glucose, and 20 Naþ-Hepes, pH
7.4, gassed with pure O2, at 371C; that for 5% (in mmol/L) 118
NaCl, 17 NaHCO3, 1.2 KH2PO4, 4.7 KCl, 1.2 MgSO4, 1.25 CaCl2, 10
glucose, and 20 Naþ-Hepes, pH 7.4, at 37 1C gassed with 95% O2

þ 5% CO2; and that for 10% (in mmol/L) 118 NaCl, 25 NaHCO3,
1.2 KH2PO4, 4.7 KCl, 1.2 MgSO4, 1.25 CaCl2, 10 glucose, and 20 Naþ-
Hepes, pH 7.4, at 37 1C gassed with 90% O2 þ 10% CO2. L-NAME
(200 mM), when present, was added 10 min before ischemia and
remained in the perfusate until the end of the reperfusion time.

Hemodynamic data were obtained using an electrode con-
nected to a Powerlab Langendorff apparatus from ADInstruments.
The pressure transducer was connected to a latex balloon and
placed inside the left ventricle, as described previously [12].

Infarcted area

Quantification of the infarcted area was conducted as pre-
viously described [5,13]. Briefly, after reperfusion the heart was
sliced and incubated in 1% triphenyltetrazolium chloride for
15 min. The infarcted area was quantified using ImageJ and is
presented as a percentage of the total area of the slice. Each heart
was sliced in three places and the areas from both sides were
quantified by an unblinded scorer and averaged.

Cardiac HL-1 cell cultures and simulated cellular IR

Cardiac HL-1 cells were kindly donated by Professor William C.
Claycomb. These cells maintain their cardiac phenotype during
extended passages and present ordered myofibrils, cardiac-specific
junctions, and voltage-dependent currents that are characteristic of a
cardiac myocyte phenotype [7]. For routine growth, HL-1 cells were
maintained in T-75 flasks at 37 1C in an atmosphere of 5% CO2 in
Claycomb medium (Sigma) supplemented with 0.1 mM norepinephr-
ine, 100 U/ml penicillin, 100 U/ml streptomycin, 2 mM glutamine,
and 10% fetal bovine serum. Experiments were conducted at 100%
confluence, after trypsinization and resuspension in a standard buffer
(pH 7.4) containing (in mmol/L) 137 NaCl, 20 Na-Hepes, 22 glucose,
5 Na-pyruvate, 20 taurine, 5 creatine, 5.4 KCl, 1 MgCl2, and 1 CaCl2.

Cell IR was simulated as previously described [11,12]. Briefly, 106

cells/ml were subjected to simulated ischemia by metabolic inhibi-
tion using 50 mM KCN and 2 mM 2-deoxyglucose added to standard
cell buffer devoid of glucose and pyruvate for 90 min, followed by
5 min centrifugation and resuspension of the cell pellet in experi-
ment buffer for simulated reperfusion. Control HL-1 cardiomyocytes
were incubated with standard buffer solution during the entire
experimental period and subjected only to centrifugations and
washes. The standard buffer was gassed with 100% O2 for the 0%
CO2 condition, and 25 mM NaHCO3 was added to a buffer gassed
with a mixture of 90% O2 þ 10% CO2 for 10% CO2 condition.

Cell viability

Cell viability was assessed by relative fluorescence of 50 mM
ethidium bromide (Sigma–Aldrich) using a Hitachi F4500 spectro-
fluorimeter at excitation and emission wavelengths of 365 and
580 nm, respectively [11,12,17]. Cells were permeabilized with 0.1%
Triton at the end of the each experiment to promote 100% cell death.
The autofluorescence of ethidium bromide was subtracted from
total fluorescence in the presence of cells, ethidium bromide, and
Triton. Data are expressed as the percentage of total cells.

Intracellular pH measurements

pH measurements were conducted using the highly sensitive
intracellular probe BCECF, with a modification of a described
method [16,30]. Cells were trypsinized, washed, and resuspended
in experimental buffer (described in the cell IR protocol) twice.
Cells (106/ml) were incubated with 5 mM BCECF for 90 min,
pelleted, and resuspended in experimental buffer. The readings
were conducted using a Hitachi F4500 spectrofluorimeter with
fixed emission at 535 nm. The excitation was scanned from 400 to
550 nm. After the measurement of the baseline fluorescence,
calibration was conducted adding 10 mg/ml nigericin to allow
from proton exchange across the plasma membrane and adding
NaOH and HCl to promote maximal alkalization and acidification.
The intracellular pH was calculated as described by the maker.
Briefly, the formula used was [Hþ] ¼ Ka((R � RA)/(RB � R))(FA(l2)/
FB(l2)), where R is the F(l1)/F(l2) ratio of fluorescence intensities (F)
measured at two wavelengths, l1, 490 nm, and l2, 440 nm, and
the subscripts A and B represent the limiting values at the acidic
and basic endpoints of the titration, respectively.

Caenorhabditis elegans culture and strains

C. elegans were cultured using standard techniques at 20 1C on
normal growth medium (NGM) agar plates [4]. Synchronized
young adults were used in the experiments. The strains used
were Bristol N2 (wild type) and KWN85 (him-5(e1490)V, uIs22
(Pmec-18::GFP)V).

C. elegans anoxia–starvation (AS)

IR in C. elegans was simulated by promoting AS followed by
reoxygenation and feeding, as previously described [32,40,41].
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C. elegans young adults were collected from NGM plates, washed
three times, and resuspended in M9 medium (22 mM KH2PO4,
42 mM Na2HPO4, 86 mM NaCl, 1 mM MgSO4, pH 7.0) supplemen-
ted with 20 mM Hepes. The animals were incubated in 100 ml of
M9 in an open Eppendorf tube at 26 1C for 20 h under either 100
or 90% N2 and 10% CO2. After AS, C. elegans were moved to a
seeded plate with a minimal amount of M9 and left to recover for
another 24 h and then scored by an unblinded observer for
viability and sensitivity to touch.

C. elegans neuron imaging

Animals were transferred to a 2% M9 agarose pad containing
0.1% tetramisole and 0.1% tricaine (EMS, Hatfield, PA, USA) and
were imaged within 20 min of being placed under a coverslip. A
Nikon Eclipse TE2000-U microscope (Nikon USA, Melville, NY,
USA), Polychrome V monochromator (TILL Photonics, Gräfelfing,
Germany), and Cooke Sensicam CCD (PCO-TECH, Romulus, MI,
USA) were coordinated using TILLvisION software to obtain
fluorescence images (470 nm excitation/535 nm emission) under
a 100� oil objective.

Western blots

Western blots used 12% denaturing gels. Gels were transferred
(4 h, 400 mV) onto polyvinylidene difluoride membranes. Protein
was quantified by the Bradford technique. For carbonylation detec-
tion, 5 mg of protein was used per lane. Detection of 3-nitrotyrosine
and methionine sulfoxide residues used 10 mg of protein.

The samples from hearts and cells were prepared by homogeniz-
ing the tissue or the cells in the presence of a RIPA buffer (135 mM
NaCl, 50 mM Tris–HCl, 1% Nonidet P-40, 0.5% sodium deoxycholate,
0.1% SDS, and 1:10 Sigma proteinase inhibitor cocktail, pH 8) and
frozen at �80 1C until use. For C. elegans samples, the live worms
were selected after reperfusion and resuspended in buffer pre-
viously described in [5] (0.2 M Tris–HCl, 100 mM DTT, 20% glycerol,
10% SDS, and 1:10 Sigma proteinase inhibitor cocktail, pH 8),
subjected to three freeze/thaw cycles (liquid nitrogen/boiling water),
and frozen at �80 1C until use.

For the carbonylation Western blots, samples were treated
as described before [8,26], or the OxyBlot kit from Millipore
was used and the reactions were done as described by the
manufacturer. Briefly, we added SDS to the samples to reach a
final concentration of 12% and then subjected the proteins to
Fig. 1. Cardiac HL-1 cells present increased oxidative damage and loss of viability wh

described under Materials and methods, in the presence or absence of CO2, after 95 min

(filled bars) of 10% H2CO3/HCO3
� . Cell viability was measured as described under Materi

(C) Protein carbonyl levels were detected as described under Materials and methods

nonischemic, 95 min; #p o 0.05 relative to 95 min IR in 0% CO2.
a reaction with 2,4-dinitrophenylhydrazine (DNPH) for 30 min
followed by the addition of a neutralization buffer. For detec-
tion, we used 1:5000 anti-DNP antibody from Sigma and
1:7000 anti-rabbit from Calbiochem. For other Western blots,
we added the protein with sample buffer (20 mg). Antibody
concentrations were anti-nitrotyrosine from Upstate, 1:5000;
anti-mouse from Calbiochem, 1:5000; anti-methionine sulfox-
ide from Upstate, 1:5000; and anti-rabbit from Calbiochem and
anti-phospho-Akt(Ser473) from Cell Signaling, 1:5000.

The blots were scanned and analyzed using ImageJ. Images were
converted to 8 bits color and intensities of the whole lane were
included. Blots were compared to the 0% CO2 control or to the 0%
CO2 ischemic group. In the 3-nitrotyrosine blot, we ran a standard
amount of nitrated protein to quantify modified tyrosine.

Statistics

All experiments presented were replicated at least three times,
and statistical analysis was conducted using GraphPad Prism 5.
Fig. 2A, B, D, and E were analyzed using two-way ANOVA followed
by Bonferroni correction, and all other data were analyzed using
Student t tests. Correlations were analyzed using linear fits.
Differences were considered significant if p o 0.05.
Results

Our aim in this work was to evaluate the impact of CO2/HCO3
� on

oxidative and functional tissue damage under the pathologically
relevant condition of IR. Because CO2/HCO3

� is a vital buffer, and
we wished to focus on the effects of CO2/HCO3

� itself, and not changes
in pH, all extracellular solutions used in this study were buffered
using Hepes, and the pH was carefully adjusted after gassing.
Additionally, we questioned if, despite the clamped pH, changes in
extracellular CO2/HCO3

� concentrations could result in alterations in
intracellular pH. To address this question, we used cardiac HL-1 cells,
a cell line that maintains the cardiac phenotype and has been
extensively used to study cardiac IR (Fig. 1) [7,12,38]. Cells were
loaded with the intracellular pH probe BCECF, and intracellular pH
was measured in the absence or presence of CO2/HCO3

� (indicated as
the percentage of gassed CO2, 0 or 10%). We found that intracellular
pH was indistinguishable under both incubation conditions (Fig. 1A).
Thus, the conditions established allow for the evaluation of the
biological role of CO2/HCO3

� independent of changes in physiological
intracellular pH.
en subjected to IR in the presence of CO2. (A) Intracellular pH was measured as

stabilization. (B) Cell viability was measured in the absence (open bars) or presence

als and methods, at 0 and 95 min, in the absence or presence of IR, as indicated and

and are shown as percentage of 0% CO2 levels at 0 min. np o 0.05 relative to
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We then subjected the cells to simulated IR (see Materials and
methods) in the presence of 0 and 10% CO2 (Fig. 1B). We found
that after IR, cells incubated in buffer containing CO2/HCO3

� (filled
bars, 95 min IR) had significantly lower viability compared to cells
incubated in the absence of CO2/HCO3

� (open bars). Indeed, cell
viability in the absence of CO2 was similar to that of cells
subjected to 95 min incubation and centrifugations, but not IR.
Cell viability before the ischemic intervention (0 min) and under
nonischemic conditions (95 min) was similar in both CO2/HCO3

�-
containing and 0% CO2 groups, indicating that changes in CO2/
HCO3

� levels do not affect cell viability under physiological
conditions, but exacerbate cell death after IR.

To verify if the loss of cell survival was associated with
oxidative damage, we measured protein carbonyls in cell lysates.
We found that incubation and centrifugation of samples for
95 min in the absence of IR increased carbonyl levels slightly
relative to baseline in both 0 and 10% CO2 (Fig. 1C, 95 min).
However, after 95 min IR, very significant increments in protein
carbonyl levels were observed, and this increase was substantially
larger in 10% CO2 samples. Together, these results demonstrate
that the presence of CO2/HCO3

� substantially affects cell survival
and oxidative damage after IR in cardiac cells.

Given the striking results of changes in CO2/HCO3
� concentra-

tions in cells subjected to IR, we sought next to evaluate the
effects of these on ischemic hearts. Langendorff-perfused rat
Fig. 2. Perfused rat hearts present increased functional loss when subjected to IR in the

developed pressure, and (C and F) infarct areas were measured as described under Mat

10% CO2. np o 0.05 relative to IR with 0% CO2.
hearts were either maintained for 150 min without any interven-
tion (nonischemic) or subjected to IR as described under Materials
and methods (Fig. 2). We found that the various gassed CO2

concentrations (0, 5, or 10%) did not affect nonischemic heart beat
rates (BPM; Fig. 2A) or left-ventricular developed pressure
(Fig. 2B), a measure of cardiac function. Furthermore, the various
CO2 concentrations did not affect activating Akt phosphorylation,
a known determinant of infarct injury (results not shown). On the
other hand, ischemic hearts perfused with 10% CO2 presented
severely decreased BPM (Fig. 2D) and change in developed
pressure (Fig. 2E) during reperfusion; the difference was signifi-
cant both comparing the curves point by point (as shown in the
figures) and integrating the area under the curve at reperfusion
(p o 0.05 comparing 0 and 10% CO2 using a t test, for both BPM
and developed pressure). Indeed, 10% CO2 hearts displayed an
infarcted area that was double that observed in 0% CO2 IR hearts
(Fig. 2F). Overall, these results confirm, in a whole-heart model,
that CO2/HCO3

� levels are a determinant of functional cardiac
recovery after IR.

To evaluate if the changes in cardiac function observed were
associated with oxidative damage, we measured protein carbonyl
levels. Whereas carbonyls were unaltered under various incubation
conditions in nonischemic hearts (results not shown), in IR hearts,
protein carbonyl levels increased in proportion to the percentage of
gassed CO2 (Fig. 3A) and were more than 50% higher in 10% CO2
presence of 10% CO2. (A and D) Beats per minute (BPM), (B and E) left-ventricular

erials and methods for nonischemic (A–C) or IR (D–F) hearts perfused with 0, 5, or



Fig. 3. Increases in CO2 are accompanied by enhanced oxidative damage in IR hearts. The amounts of (A) carbonylated proteins, (B) methionine sulfoxide and

(C) nitrotyrosine were quantified as described under Materials and methods after IR conducted under the conditions of Fig. 2. np o 0.05 relative to 0% CO2; #p o 0.05

relative to 5% CO2.

Fig. 4. L-NAME does not inhibit functional loss promoted by CO2 in IR hearts. (A) Beats per minute (BPM), (B) left-ventricular developed pressure and (C) infarct areas were

measured as for Fig. 2, with the addition of 200 mM L-NAME to the perfusion medium. np o 0.05 relative to 0% CO2.
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relative to the absence of this gas. Similar increases in methionine
sulfoxide (Fig. 3B) and nitrotyrosine (Fig. 3C) residue levels were also
observed in 10% CO2 tissues. These protein modifications were
undetectable in nonischemic heart samples perfused with any
concentration of CO2. Again, our results suggest that, although CO2/
HCO3

� does not overtly affect hearts under physiological conditions, it
is a determinant in functional and oxidative damage after IR.

The detection of increased nitrotyrosine radicals in hearts
perfused with CO2 indicates the participation of nitric oxide-
derived species in cardiac damage enhanced by CO2. Indeed,
peroxynitrite in the presence of CO2 is very efficient at promoting
tyrosine nitration due to the production of nitrogen dioxide and
the carbonate radical anion (reviewed in [23]). To investigate a
potential role for nitric oxide-derived oxidants in this process, we
measured the effects of L-NAME, an inhibitor of nitric oxide
synthases, on CO2-enhanced cardiac damage after IR (Fig. 4). We
found that cardiac damage increases promoted by CO2 persisted
in the presence of L-NAME. Whereas this result suggests nitric
oxide synthases are not involved in the effects of CO2, a role for
nitric oxide cannot be excluded because it can be produced
through nitrite reduction during ischemia [36,44].

We next evaluated the effect of CO2/HCO3
� on protein carbonyl

formation in C. elegans during anoxia–starvation as a model for
worm IR. Behavior and cell morphology were also assessed in the
surviving worms. We found that CO2 had little apparent effect in the
absence of AS (results not shown), whereas survival after AS was
not altered by 0 or 10% CO2 either (Fig. 5A). Protein carbonyls under
AS conditions tended, nonsignificantly, to increase in 10% CO2

(Fig. 5B). Interestingly, however, surviving animals exhibited subtle
but significant differences in behavior, manifested as an increased
defective response to light body wall touch as a function of CO2

during hypoxia (Fig. 5C). The behavioral response to body wall touch
is mediated by six mechanosensory neurons whose processes run
just under the hypodermis of the animal. To investigate if the
decrease in function in these animals was accompanied by damage
to these neurons, an integrated transgene was used to label the
touch cells with green fluorescent protein (GFP), and two of these
neurons (PLML and PLMR) were examined in detail, as described
(Materials and methods). Neuronal abnormalities that were scored
included the appearance of GFP inclusions in the processes, tortuous
processes, and breaks, all of which have been shown to accumulate
as a result of hypoxia [9]. The incidence of such abnormalities was
significantly increased by AS in 10% CO2 compared to 0% CO2 (Fig. 6)
demonstrating that, in a whole organism model, higher CO2/HCO3

�

promoted more significant tissue and functional damage after AS.
Discussion

Considering its role as the main biological buffer, it is surprising
so little recent attention has been given to the biological activity of
CO2/HCO3

� [14,23]. In particular, metabolic and redox effects of this
buffer are expected. In this work, we evaluated the results of various
tensions of CO2, incurring at different CO2/HCO3

� levels.



Fig. 5. 10% CO2 decreases touch responses in C. elegans after IR, without affecting survival. (A) The percentage of worms that exhibit 24-h post-AS survival in the presence

or absence of CO2 was measured as described under Materials and methods. The N2 strain is the canonical wild-type genetic background, and KWN85 contains an

integrated transgene that labels mechanosensory neurons with green fluorescent protein. (B) Proteins were extracted from living C. elegans after AS in the presence or

absence of CO2, and protein carbonyls were detected using an OxyBlot and (C) The response to touch stimuli of living C. elegans after AS in the presence or absence of CO2

was measured as described under Materials and methods. npo0.01 relative to 0% CO2.

Fig. 6. 10% CO2 increases touch neuron modifications. (A) The accumulation of GFP

aggregates in the touch neuron (PLML and PLMR) processes or (B) abnormalities such

as tortuous processes and breaks were monitored in surviving anesthetized C. elegans

after IR in the presence or absence of CO2, as described under Materials and methods.
np o 0.05 relative to 0% CO2.
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Using cardiac cells, perfused rat hearts, and C. elegans, we found
that increased CO2/HCO3

� heightened the injury associated with IR
(Figs. 1–3) [18]. Previous studies have determined that increased
levels of CO2 result in increased heart beat rates [33], but no change
in pumping function [37]. However, these changes were completely
reversed by normalizing pH, indicating that they are related to pH
and not to other possible biological activities of CO2/HCO3

�. These
data, in fact, correlate well with our finding that changes in CO2/
HCO3

� in the presence of clamped perfusion pH do not alter the basal
function of perfused rat hearts (Fig. 2). On the other hand, Lavani et al.
[20] found that reperfusion in the presence of high CO2 tension
resulted in protection against cardiac damage. This result differs from
ours, in that we found higher cardiac damage in the presence of high
CO2 tension. Because Lavani et al. [20] did not correct for pH changes,
and acidic pH is strongly protective in cardiac ischemia [19,31], it
seems reasonable to propose that their effects also are attributable to
pH changes promoted by altered CO2 tension. Our work separated the
pH effect of CO2 from other biological effects by clamping pH with
high concentrations of other buffers. Although we could not ascertain
that this extracellular pH clamping maintained intracellular pH in
perfused hearts and C. elegans, measured intracellular pH was
identical in cells incubated in the presence and absence of CO2/HCO3

�

(Fig. 1A), indicating that changes in pH are not necessary for the
detrimental effects of CO2.

Under these conditions, it was possible to focus on the redox
effects of CO2/HCO3

� under basal conditions and IR. The presence
of CO2 in solution allows for the generation of the highly reactive
carbonate radical from the reaction of CO2 with peroxynitrite. CO2

also reacts with H2O2, producing peroxymonocarbonate, which is
a better two-electron oxidant than H2O2 and decomposes to the
carbonate radical in the presence of biologically ubiquitous metal
ions [25,29]. The carbonate radical does not produce any known
stable target adducts and is therefore difficult to detect in vivo
and even in vitro [23]. Peroxymonocarbonate and other oxidants
may also be derived from bicarbonate. Thus, we investigated if
changing CO2/HCO3

� altered markers of tissue redox state.
Levels of protein carbonyls, the only modification detected in the

absence of IR, were not altered by CO2/HCO3
� under nonischemic

conditions in any of the models studied. This result is not unexpected,
because bicarbonate-derived oxidants are produced secondarily to
reactions promoted by other reactive oxygen and nitrogen species,
which are much more abundant after IR. Indeed, we found that
in both cardiac cells and perfused hearts (Figs. 1 and 3), levels of
oxidized proteins after IR increase markedly with the presence and
increasing levels of CO2/HCO3

� . In fact, a linear correlation was
detected between carbonylated protein (r2

¼ 0.995, p ¼ 0.01) and
methionine sulfoxide (r2

¼ 0.9881, p ¼ 0.06) and CO2 levels. Changes
in protein modifications were not significantly increased in C. elegans,

although they tended to be higher; it should be pointed out that AS
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in C. elegans requires 20 h after reoxygenation to produce notable
functional effects, and the long reperfusion time may result in the
removal of many modified proteins. Despite the lack of strong
evidence for changes in redox state in the C. elegans system, CO2/
HCO3

� affected the functional recovery of the worms after AS
(Figs. 5 and 6), once again demonstrating the importance of
bicarbonate in ischemic damage.

Overall, our results show that over a wide range of experimental
models (cells, organs, and whole organisms), the presence of CO2/
HCO3

� promotes a strong decrease in function after IR, in a manner
correlated with tissue oxidative damage. This demonstrates that
CO2/HCO3

� levels are a determinant of the outcome of pathologically
relevant conditions of oxidative imbalance and may explain the
protective effect of modulating carbonic anhydrases [1,28]. Although
CO2/HCO3

� are unavoidable in biological systems, our data provide a
gain in the understanding of the mechanisms involved in tissue
damage after ischemic insults, which we hope will be important for
future development of therapeutic interventions. Furthermore, our
results provide evidence, albeit indirect, for the participation of
bicarbonate radicals in pathologically relevant biological processes
and indicate that more attention should be focused on the redox
biology of the CO2/HCO3

� buffer.
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