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GCK-3, a Newly Identified Ste20 Kinase, Binds To and Regulates the
Activity of a Cell Cycle-dependent CIC Anion Channel
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ABSTRACT CLH-3b is a Caenorhabditis elegans C1C anion channel that is expressed in the worm oocyte. The channel
is activated during oocyte meiotic maturation and in response to cell swelling by serine/threonine dephosphoryla-
tion events mediated by the type 1 phosphatases GLC-7ac and GLC-7(3. We have now identified a new member of
the Ste20 kinase superfamily, GCK-3, that interacts with the CLH-3b COOH terminus via a specific binding motif.
GCK-3 inhibits CLH-3b in a phosphorylation-dependent manner when the two proteins are coexpressed in
HEK293 cells. clh-3 and gck-3 are expressed predominantly in the C. elegans oocyte and the fluid-secreting excretory
cell. Knockdown of gck-3 expression constitutively activates CLH-3b in nonmaturing worm oocytes. We conclude
that GCK-3 functions in cell cycle- and cell volume-regulated signaling pathways that control CLH-3b activity.
GCK-3 inactivates CLH-3b by phosphorylating the channel and/or associated regulatory proteins. Our studies
provide new insight into physiologically relevant signaling pathways that control CIC channel activity and suggest
novel mechanisms for coupling cell volume changes to cell cycle events and for coordinately regulating ion chan-

nels and transporters that control cellular CI~ content, cell volume, and epithelial fluid secretion.
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INTRODUCTION

CIC voltage-gated Cl~ channels are present in all phyla
and function in plasma and intracellular organelle
membranes (Jentsch et al., 2002). The channels play
key roles in diverse and fundamental physiological pro-
cesses, including regulation of cytoplasmic CI~ levels
and skeletal muscle membrane excitability, transepithe-
lial C1~ transport, organelle acidification, regulation of
nitrate content in plants, and cation homeostasis in
yeast (Jentsch et al., 2002). The physiological importance
of CICs is underscored by disease-causing mutations in
channel-encoding genes. Nine CIC genes have been
identified in mammals, and mutations in five of these
give rise to inherited muscle, bone, kidney, and neuro-
logical diseases in humans (Jentsch et al., 2002; Haug
et al., 2003).

Despite intensive study and their functional impor-
tance, little is known about how CIC channels are regu-
lated, and regulatory signaling pathways have not been
defined. We recently identified a ClC-type anion chan-
nel encoded by the c¢lh-3 gene in Caenorhabditis elegans
(Rutledge et al., 2001). A ¢lh-3 splice variant, CLH-3b, is
expressed in the worm oocyte (Denton et al., 2004)
and is activated during oocyte meiotic cell cycle pro-
gression, a process termed meiotic maturation, and in
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response to oocyte swelling (Rutledge et al., 2001,
2002; Denton et al., 2004).

CLH-3b appears to play no role in oocyte volume reg-
ulation following swelling (Rutledge et al., 2001). Induc-
tion of oocyte meiotic maturation is the physiologically
relevant stimulus for channel activation (Rutledge et
al., 2001). Disruption of CLH-3b expression by RNA in-
terference or deletion mutagenesis induces premature
ovulatory contractions of smooth muscle-like myoepi-
thelial sheath cells that surround and are coupled to
oocytes by gap junctions (Rutledge et al., 2001;
Strange, 2002; Yin et al., 2004). Ovulatory sheath cell
contraction is triggered by release of LIN-3, an EGF-
like ligand, from the maturing oocyte, and subsequent
activation of inositol 1,4,5-trisphosphate (IP;)—depen-
dent Ca®* signaling pathways (Yin et al., 2004). Activa-
tion of CLH-3b depolarizes the oocyte (C. Boehmer
and K. Strange, unpublished observations) and most
likely the gap junction—coupled sheath cells. We have
postulated that this depolarization in turn inhibits
sheath cell contraction by inhibiting Ca®* influx required
for generating and/or maintaining IP;-dependent re-
lease of plasma membrane Ca?* from intracellular
stores (Rutledge et al., 2001; Strange, 2002; Yin et al.,

Abbreviations used in this paper: CHO, Chinese hamster ovary; dsRNA,
double strand RNA; GCK, germinal center kinase; GST, glutathione
S-transferase; HEK, human embryonic kidney; PAK, p2l-activated
kinase.
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2004). Regulation of sheath cell contraction by CLH-3b
activity in maturing oocytes likely functions to synchro-
nize oocyte cell cycle progression with ovulation and
fertilization (Rutledge et al., 2001; Strange, 2002; Yin et
al.,, 2004).

CLH-3b activation occurs by serine/threonine de-
phosphorylation mediated by the type-1 protein phos-
phatases GLC-7a and GLG-78 (Rutledge et al., 2002).
To identify additional proteins that regulate CLH-3b
activity, we performed yeast two-hybrid analysis using
the intracellular COOH terminus of the channel as
bait. Four interacting proteins were identified in this
screen, including a member of the Ste20 (sterile 20)
serine/threonine kinase superfamily. The Ste20 pro-
tein was identified originally in yeast where it functions
in mitogen-activated protein kinase (MAPK) signaling
cascades that control mating behavior, invasive growth,
and the regulatory response to hypertonic stress (Elion,
2000; Raitt et al., 2000; Ramezani-Rad, 2003). Ste20-
type kinases comprise a large superfamily that is di-
vided into p2l-activated kinase (PAK) and germinal
center kinase (GCK) subfamilies (Dan et al., 2001).
Members of Ste20 superfamily regulate numerous fun-
damental physiological processes, including the cell cy-
cle, apoptosis, cellular stress responses, morphogene-
sis, and oocyte meiotic maturation (Faure et al., 1997,
1999; Cau et al., 2000; Dan et al., 2001).

The CLH-3b-interacting kinase is a newly identified
member of the Ste20 superfamily and has been desig-
nated GCK-3 (germinal center kinase-3). GCK-3 is a ho-
mologue of mammalian PASK/SPAK and OSR1, and
Drosophila Fray (Dan et al., 2001). Expression of PASK/
SPAK is enriched in rat neurons and transporting epi-
thelia (Ushiro et al., 1998). PASK/SPAK has been shown
recently to bind to and regulate NKCC1, a cell shrink-
age-activated Na-K-2Cl cotransporter (Piechotta et al.,
2002; Dowd and Forbush, 2003).

We demonstrate here that GCK-3 binds to and func-
tions to inhibit CLH-3b when the two proteins are coex-
pressed in HEK293 cells. GCK-3 inactivates CLH-3b by
phosphorylating the channel and/or associated regula-
tory proteins. clh-3 and gck-3 are both expressed pre-
dominantly in the C. elegans oocyte and excretory cell,
which functions as a secretory “epithelium” (Strange,
2003). Knockdown of gck-3 expression by RNAI in-
duces constitutive activation of CLH-3b in nonmatur-
ing worm oocytes. We conclude that GCK-3 functions
in cell cycle- and cell volume-regulated signaling path-
ways that control CLH-3b activity. Our studies pro-
vide new insights into physiologically relevant signaling
pathways that control CIC channel activity and suggest
novel mechanisms by which ion channels and trans-
porters may be coordinately regulated to control cellu-
lar CI~ content, cell volume, and transepithelial fluid
secretion.

MATERIALS AND METHODS

C. elegans Strains

The wild-type Bristol N2 strain was used in this study. Worms were
cultured at 16°C using standard methods (Brenner, 1974).

Yeast Two-hybrid Analysis

The bait plasmid pJP99 was created by cloning the cytoplasmic
COOH terminus (amino acids 542-1001) of CLH-3b into pD-
BLeu (Invitrogen). pJP99 was cotransformed in the yeast strain
MaV203 (genotype: MATw, leu2-3, 112, trpl-901, his3A200, ade2-
101, gal4A, galB0A, SPAL10::URA3, GALl:lacZ, HIS3yys GALL:
HIS3@LYS2, canl®, cyh2R) with a mixed stage C. elegans cDNA li-
brary (ProQuest; Invitrogen) that was ligated downstream of the
GAL4 activation domain in pPC86. Approximately 0.5 X 106
yeast transformants were plated on minimal dextrose media lack-
ing tryptophan, leucine, histidine, and uracil and containing 5
mM 3-amino triazole (MD-TLHU, 3-AT) and allowed to grow at
30°C for 1 wk. Positive clones were tested for B-galactosidase ex-
pression using a standard filter assay and then retransformed
into MaV203 either alone or with pJP99. cDNA inserts of recon-
firmed positive clones were sequenced. The complete mRNA se-
quence for the predicted gene Y59A8B.23 was determined via 5’
RACE using nested downstream gene-specific primers and an
SL1 splice leader anchored upstream primer.

Quantitative liquid culture B-galactosidase assays were per-
formed using 2-nitrophenyl B-p-galactopyranoside as a substrate
(Yeast Protocols Manual; CLONTECH Laboratories, Inc.). The
yeast strain AH109 (genotype: MATa, trpl-901, leu2-3, 112, ura3-
52, his3-200 galdA, gal80A, HIS3y s GALL::HISS@LYS2, GAL2 s
GAL2::ADE2, MEL1;z¢MEL1::lacZ@ URA3) was transformed with
either pJP99 or pJP99(F679A) in which phenylalanine 679 of
CLH-3b was mutated to alanine. Yeast were cotransformed with
pPC86 as a negative control or pJP101-29, which consisted of
GCK-3 (amino acids 419-596) ligated downstream of the GAL4
activation domain in pPC86. CLH-3b fusion protein expression
was confirmed by Western blotting of yeast extracts with an anti-
GAL4 binding domain monoclonal antibody (not depicted).

Glutathione S-Transferase Affinity Assays

A fusion protein consisting of amino acids 604-1001 of the CLH-
3b COOH terminus fused to glutathione S-transferase (GST)
was generated in BL21 Escherichia coli and immobilized on glu-
tathione Sepharose 4B. Chinese hamster ovary (CHO) cells were
cultured in Ham’s F12 medium (GIBCO BRL) containing 10%
FBS (Hyclone Laboratories, Inc.), 50 U/ml penicillin, and 50
wg/ml streptomycin. Cells grown in 60-mm diameter tissue cul-
ture plates to ~50% confluency were transfected using FuGENE
(Roche Diagnostics Corporation) with 1.3 wg of Vb-tagged GCK-
3 ¢DNA ligated into pcDNA3.1 and grown at 37°C for 24 h. Two
60-mm plates were rinsed twice with PBS (2.7 mM KCl, 144 mM
Nacl, 1.5 mM KH,PO,, 8.1 mM Na,HPO,, pH 7.4) and placed on
ice. Cells were lysed by adding 0.5 ml of PBS containing 1% Tri-
ton X-100 and complete protease inhibitor cocktail (Roche Diag-
nostics). Lysed cells were scraped into a microcentrifuge tube,
passed through a 25-gauge needle, and incubated on ice for 20—
30 min. Lysates were centrifuged for 20 min at 10,000 gand 4°C,
and pooled supernatants were incubated at room temperature
with either glutathione Sepharose 4B alone or the immobilized
CLH-3b GST fusion protein. After 90 min, the Sepharose was
washed five times with 1 ml of PBS, resuspended in 120 ul of
Laemmli buffer containing 2% SDS and 200 mM DTT, and
heated to 60°C for 60 min. V5-tagged GCK-3 was identified by
Western blotting using an anti-V5 antibody (Invitrogen).
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Transfection and Whole Cell Patch Clamp Recording

HEK293 (human embryonic kidney) cells were cultured in 35-
mm diameter tissue culture plates in Eagle’s minimal essential
medium (MEM; GIBCO BRL) containing 10% FBS (Hyclone),
nonessential amino acids, sodium pyruvate, 50 U/ml penicillin,
and 50 pg/ml streptomycin. After reaching ~50% confluency,
cells were transfected using Superfect reagent (QIAGEN) with 1
or 2 pg GFP, 1 ug CLH-3b, and 1 pg GCK-3 cDNA ligated into
pcDNA3 or pcDNA3.1. The total amount of cDNA transfected
into cells for all experiments was 3 pg. Cells were transfected for 3 h,
washed three times with MEM, and incubated overnight at 37°C.

HEK293 cells were patch clamped ~24 h after transfection. 2 h
before initiating electrophysiological experiments, transfected
cells were dissociated by exposure to 0.25% trypsin containing 1
mM EDTA (GIBCO BRL) for 45 s and then plated onto poly-L-
lysine—coated coverslips. Plated coverslips were placed in a bath
chamber mounted onto the stage of an inverted microscope.
Cells were visualized by fluorescence and differential interfer-
ence contrast microscopy.

Transfected cells were identified by GFP fluorescence and
patch clamped using a bath solution containing 90 mM NMDG-
Cl, 5 mM MgSO,, 1 mM CaCl,, 12 mM Hepes free acid titrated to
pH 7.0 with CsOH, 8 mM Tris, 5 mM glucose, 80 mM sucrose,
and 2 mM glutamine (pH 7.4, 295 mOsm), and a pipette solu-
tion containing 116 mM NMDG-CI, 2 mM MgSO,, 20 mM Hepes,
6 mM CsOH, 1 mM EGTA, 2 mM ATP, 0.5 mM GTP, and 10 mM
sucrose (pH 7.2, 275 mOsm). Cells were swollen by exposure to a
hypotonic (225 mOsm) bath solution that contained no added
sucrose. Exposure to hypotonic solution was limited to 1 min to
avoid contamination of CLH-3b current traces by activation of
the ubiquitous outwardly rectifying C1~ current I 4. (Rutledge
etal., 2002).

HEK293 were depleted of ATP by incubation for 20-30
min with 5 mM 2-deoxyglucose and 1 puM rotenone and patch
clamped with an ATP-free pipette solution containing 40 uM oli-
gomycin, 20 wM rotenone, and 5 wM iodoacetate. Metabolic in-
hibitors were dissolved as stock solutions in DMSO and then
added to the pipette or bath saline at a final DMSO concentra-
tion of =0.01%.

Late-stage, meiotically arrested C. elegans oocytes were isolated
as described previously (Rutledge et al., 2001). Oocytes were
patch clamped using a bath solution containing 116 mM NMDG-
Cl, 2 mM CaCly, 2 mM MgCl,, 25 mM HEPES, and 71 mM su-
crose (pH 7.3, 340 mOsm) and a pipette solution containing 116
mM NMDG-CI, 2 mM MgSO,, 20 mM HEPES, 6 mM CsOH, 1
mM EGTA, 48 mM sucrose, 2 mM ATP, and 0.5 mM GTP (pH
7.2, 315 mOsm). Swelling was induced by exposure to a hypo-
tonic (260 mOsm) bath solution that contained no added
sucrose.

Patch electrodes were pulled from 1.5-mm outer diameter si-
lanized borosilicate microhematocrit tubes; electrode resistance
ranged from 2 to 4 M{). Currents were measured with an Axo-
patch 200B (Axon Instruments) patch clamp amplifier. Electri-
cal connections to the patch clamp amplifier were made us-
ing Ag/AgCl wires and 3 M KCl/agar bridges. Data acquisition
and analysis were performed using pClamp 8 software (Axon
Instruments).

I-Vrelationships were constructed from mean CLH-3b current
values recorded over the last 20 ms of each test pulse. Coexpres-
sion of GCK-3 causes striking hyperpolarizing shifts in the voltage
dependence of CLH-3b activation (e.g., Fig. 2). As described pre-
viously (Denton et al., 2004), we are unable to estimate the half-
activation potential for CLH-3b from Boltzmann analyses of tail
currents because CLH-3b inactivates too rapidly at positive po-
tentials to reliably separate channel current from capacitance
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current. Hyperpolarizing test pulses also cannot be used for Boltz-
mann analysis because maximum channel open probability oc-
curs at potentials more negative than —170 mV. Voltage clamp-
ing HEK293 cells beyond this voltage is difficult due to the insta-
bility of the cell membrane, particularly during swelling and
metabolic poisoning experiments. We therefore estimated the
channel activation voltage from [~V relationships. CLH-3b acti-
vates between —20 and —40 mV when expressed alone, and be-
tween —60 and —100 mV when coexpressed with GCK-3 (Fig. 2).
Activation voltage was determined by fitting a straight line be-
tween —40 and —60 mV for CLH-3b alone and —80 and —100
mV for the channel expressed with GCK-3 and extrapolating
back to the zero current voltage. The activation voltage was de-
fined as the zero current intercept of this line.

Time constants for hyperpolarization-induced activation were
determined by fitting current traces with mono- or bi-exponen-
tial functions over the first 500 ms of test pulses following decay
of the capacitance transient. The fitting requirements for CLH-
3b expressed alone or coexpressed with GCK-3 were different,
making it difficult to readily compare time constants between dif-
ferent experimental groups and conditions. We present the time
constants of activation of CLH-3b expressed in the presence and
absence of GCK-3 and discuss possible functional implications.
However, to simplify data presentation and interpretation, we
report and compare under different experimental conditions
times required to reach 50% current activation during 1-s hyper-
polarizing test pulses.

RNA Interference

cDNA templates for GFP and GCK-3 (bp 1010-1810) were am-
plified from pPD128.110 (www.ciwemb.edu/pub/FireLablnfo/
FireLabVectors) and a C. elegans cDNA library (provided by R.
Barstead, Oklahoma Medical Research Foundation, Oklahoma
City, OK). Sense and antisense RNA were synthesized by T7 poly-
merase (MEGAscript; Ambion) and annealed dsRNA was puri-
fied using an RNeasy Mini Kit (QIAGEN). RNA size, purity, and
integrity were assayed on agarose gels. Annealed dsRNA was di-
luted into Tris phosphate buffer for injection. Worms were in-
jected in one gonad arm with ~1,000,000 molecules of either
GFP or GCK-3 dsRNA. Oocytes were isolated for patch clamping
20-24 h after injection.

Single Oocyte RT-PCR

Gonad arms were dissected in egg buffer as described previously
(Rutledge et al., 2001), transferred through two separate 10 ml
buffer washes, and then placed in a disposable 0.25-ml bath
chamber. After an oocyte was ejected, the gonad was removed
and the chamber perfused with 50 ml of egg buffer. Single
washed oocytes were transferred by micropipette to 2 pl of dis-
tilled water in a PCR tube and lysed by freezing—thawing. Sam-
ples of perfusate surrounding oocytes were also placed into PCR
tubes as a negative control. The volume transferred was approxi-
mately two- to threefold greater than the fluid volume trans-
ferred with the oocyte. RI-PCR was performed to determine the
presence of GCK-3 transcripts in oocytes using the Titan One
Tube RT-PCR System (Roche). The following thermocycle pro-
gram was used for RT-PCR: 1x [50°, 30 min], 32x [94°, 30 s; 58°,
30 s; 68° 1 min], 1x [68°, 7 min]. PCR primers flanked DNA se-
quence containing two introns in order to distinguish amplifica-
tion of cDNA from genomic DNA.

Construction of Transgenes and Transgenic Worms

A GCK-3 transcriptional GFP reporter was created by PCR ampli-
fication of ~3.5 kb of genomic sequence upstream of the start
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codon. The PCR product was inserted into the vector pFH6.II
(Nehrke and Melvin, 2002), and transgenic worms were gener-
ated by DNA microinjection as described by Mello et al. (1991)
using r0l-6 as a transformation marker. Transgenic worms were
imaged at room temperature by confocal microscopy using a
Carl Zeiss Microlmaging, Inc. LSM510 laser scanning micro-
scope, a Carl Zeiss Microlmaging, Inc. Plan-NeoFluar 40X/1.3
N.A. objective lens, and LSM510 imaging software. GFP was ex-
cited at 488 nm, and emission was detected through a 505-550-nm
barrier filter. Differential interference contrast and fluorescence
micrographs were combined using Adobe Photoshop software.

Statistical Analyses

Data are presented as means *+ SEM. Statistical significance was
determined using Student’s two-tailed ¢ test or ANOVA. P values
of <0.05 were taken to indicate statistical significance.

RESULTS

GCK-3, a Novel C. elegans Ste20-Related Kinase, Interacts
with the COOH Terminus of CLH-3b

To identify putative CLH-3b regulatory proteins, we
performed yeast two-hybrid analysis using the channel
intracellular COOH terminus (amino acids 542-1001)
as bait. Of ~36 positive clones that were recovered,
three coded for the COOH-terminal portion of the pre-
dicted Y59A8B.23 open reading frame. The full-length

Ficure 1. CLH-3b interacts with the Ste20 kinase
GCK-3. (A) Western blot of lysates from CHO cells ex-
pressing full-length Vb5-tagged GCK-3. Lysates were incu-
bated with a CLH-3b COOH terminus (amino acids
604-1001) GST fusion protein immobilized on gluta-
thione Sepharose 4B or with glutathione Sepharose 4B
alone. (B) Sequence alignment of C. elegans GCK-3,
Drosophila Fray, and mouse SPAK (also known as PASK)
and OSRI. Sequences were aligned using ClustalW.
Identical residues and conserved substitutions are shown
in black and gray, respectively. Asterisk indicates location
of conserved lysine residue required for kinase activity.

Y59A8B.23 cDNA sequence was obtained using nested
5" RACE and found to encode a previously undescribed
Ste20 superfamily kinase that has been termed germi-
nal center kinase-3 (GCK-3; Genbank/EMBL/DDB]J ac-
cession no. AY741200).

We confirmed the interaction between CLH-3b and
GCK-3 by GST affinity assay. Lysates from CHO cells
expressing full-length GCK-3 tagged with a V5 epi-
tope were incubated with a CLH-3b COOH terminus
(amino acids 604-1001) GST fusion protein immobi-
lized on glutathione Sepharose beads. As shown in Fig.
1 A, GCK-3 interacted with the CLH-3b COOH termi-
nus fusion protein, but not with glutathione Sepharose
alone.

Phylogenetic analysis indicates that GCK-3 is a homo-
logue of mammalian PASK/SPAK and OSR1, and Dro-
sophila Fray (Dan et al., 2001). A multiple sequence
alignment of these four proteins is shown in Fig. 1 B.

GCK-3 Regulates Heterologously Expressed CLH-3b by
Phosphorylation-dependent Mechanisms

As discussed earlier, CLH-3b is activated in vivo by
serine/threonine dephosphorylation during oocyte mei-
otic maturation or by oocyte swelling (Rutledge et
al., 2001, 2002). Given the interaction of GCK-3 and
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Ficure 2. GCK-3 inhibits heterolo-
gously expressed CLH-3b. (A) Whole
cell currents in HEK293 cells express-
ing CLH-3b alone or CLH-3b and GCK-
3. Currents were evoked by stepping
membrane voltage for 1 s between
—140 and +60 mV in 20-mV incre-
ments from a holding potential of 0
mV. Test pulses were followed by a 1-s
interval at 0 mV. Each family of current
traces shown is the mean of eight cells.
(B) Current-to-voltage relationships of
the whole cell currents shown in A. Co-
expression of CLH-3b and GCK-3 signif-
icantly (P < 0.03) reduces current den-
sity over the entire range of potentials
where the channels were active. Values
are means = SEM (n = 8). (C) Mean
whole-cell currents in cells expressing
CLH-3b alone or together with GCK-3
after 1 min of swelling (n = 8 each).
Data are from the same cells as shown
in A. (D) Relative swelling-induced
whole cell current in cells expressing
CLH-3b alone or coexpressing CLH-3b
and GCK-3. Cells were swollen for 1
min. Values are means = SEM (n = 8).
Relative current values were calculated
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L E o~
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CLH-3b, and the importance of Ste20-related serine/
threonine kinases in regulating cell cycle events (Dan
et al.,, 2001) and the yeast hypertonic stress response
(Raitt et al., 2000), we tested the hypothesis that the ki-
nase functions normally to inactivate the channel by
phosphorylation.

Expression of CLH-3b in HEK293 cells generated
robust hyperpolarization-evoked Cl~ currents (Igy ;)
with rapid activation kinetics and a relatively low volt-
age threshold for channel activation (Fig. 2, A and B).
The voltage-dependent properties resemble those of
native oocyte Iq; .3, activated by meiotic maturation or
hypotonic cell swelling (Rutledge et al., 2001, 2002;
Denton et al., 2004), suggesting that CLH-3b expressed
alone is constitutively active.

Coexpression of GCK-3 and CLH-3b led to striking
alterations of I .3, functional properties. Fig. 2 A
shows mean whole cell current traces recorded be-
tween —140 and 60 mV in 20-mV increments from
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only for test potentials where current
amplitude was measurable. (E) Activa-
tion voltages and (F) 50% rise times of
whole cell currents in cells expressing
CLH-3b alone or coexpressing CLH-3b
and GCK-3. GCK-3 decreases channel
voltage sensitivity and slows hyperpolar-
ization-induced  channel activation.

Cells were swollen for 1 min. Values are
means = SEM (n = 8). *, P < 0.0001
compared with cells expressing CLH-3b
alone. , P < 0.0001 compared with
nonswollen cells.

HEK293 cells expressing CLH-3b alone or coexpress-
ing the channel and GCK-3. Mean * SEM current-volt-
age (I-V) relationships for these currents are shown in
Fig. 2 B. GCK-3 coexpression led to three- to ninefold
reductions (P = 0.03) in current density over the entire
range of potentials where I3, was active. The reduc-
tion in current amplitude was accompanied by a signifi-
cant (P < 0.0001) hyperpolarizing shift in the activa-
tion voltage. CLH-3b expressed alone activated at —30
mV (Fig. 2 E, closed bars on left), whereas CLH-3b co-
expressed with GCK-3 activated at —72 mV (Fig. 2 E,
closed bars on right).

GCK-3 coexpression also dramatically slowed the ki-
netics of hyperpolarization-induced current activation
(Fig. 2 A). As shown in Fig. 2 F (closed bars on left), the
mean time required to reach 50% current activation
(i.e., 50% rise time) in response to a 1-s step in mem-
brane voltage from 0 to —100 mV is 7 ms when CLH-3b
is expressed alone. Coexpression of CLH-3b and GCK-3
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significantly (P < 0.0001) increased the 50% rise time
to a mean value of 182 ms (Fig. 2 F, closed bars on
right). CLH-3b activity in the C. elegans oocyte is low un-
der basal conditions (Rutledge et al., 2001, 2002; Den-
ton et al., 2004; see Fig. 6 B). The hyperpolarized acti-
vation voltage and slowed activation kinetics observed
when CLH-3b is coexpressed with GCK-3 in HEK293
cells are remarkably similar to those of the C. elegans oo-
cyte Icpps, before activation by meiotic maturation or
oocyte swelling (Rutledge et al., 2001; Denton et al.,
2004).

CLH-3b is activated ~20-fold when C. elegans oocytes
are swollen by exposure to a hypotonic bath solution
(Rutledge et al., 2001). If GCK-3 functions normally to
inactivate CLH-3b, and if it is part of the signaling path-
way involved in cell volume—dependent channel regula-
tion, then the kinase should alter swelling-induced cur-
rent activation in HEK293 cells. As shown in Fig. 2 (C
and D), cell swelling induced by a 1-min exposure to
a 230 mOsm bath solution increased I3, recorded
between —140 and —60 mV by 20-50% in CLH-3b-
expressing HEK293 cells. In contrast, the degree of
swelling-induced current activation was five- to ninefold
greater (P < 0.0002) in cells coexpressing GCK-3 and
CLH-3b.

Swelling-induced activation of native CLH-3b is ac-
companied by large increases in channel voltage sensi-
tivity and the rate of hyperpolarization-induced chan-

nel activation (Rutledge et al., 2001; Denton et al.,
2004). Cell swelling had no significant (P > 0.05) effect
on the activation voltage or kinetics of hyperpolariza-
tion-induced current activation in HEK293 cells ex-
pressing CLH-3b alone (Fig. 2, E and F, open bars
on left). However, in cells coexpressing the channel
and GCK-3, cell swelling significantly (P < 0.0001) de-
creased activation voltage from —72 to —47 mV and
also significantly (P < 0.04) reduced the 50% rise time
from 182 to 75 ms (Fig. 2, E and F, open bars on right).
Taken together, the data in Fig. 2 demonstrate that
CLH-3b expressed alone in HEK293 cells is largely con-
stitutively active and that coexpression with GCK-3 par-
tially inhibits the channel. Channels that have been in-
hibited by GCK-3 are activated dramatically by cell vol-
ume increase.

We performed two sets of experiments to determine
if the GCK-3-induced inhibition of CLH-3b is mediated
by phosphorylation reactions. We first tested if intracel-
lular ATP depletion by metabolic poisoning prevents
inhibition of Iy yy3,. ATP depletion should inhibit GCK-3
activity and has been shown to cause constitutive acti-
vation of native Igpyr3;, in C. elegans oocytes (Rutledge et
al., 2002; Denton et al., 2004). As shown in Fig. 3 A,
ATP depletion increased whole cell current density
2-11-fold (P < 0.05) over the entire range of potentials
where g3, was active. In addition, ATP depletion sig-
nificantly (P < 0.0001) reduced the activation voltage
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FiGure 4. GCK-3 coexpression alters a fast gating process in
CLH-3b. (A) Time constants of hyperpolarization-induced activa-
tion of CLH-8b when expressed alone or together with GCK-3.
Icp s activation in cells expressing CLH-3b alone is well described
by the sum of two time constants (i.e., T, and Ty,,), whereas acti-
vation of the kinase-inhibited current is described by a single time
constant. (B) Relative amplitudes versus voltage of the fast and
slow components, A¢ and A, of Iy, in cells expressing CLH-3b
alone. Apand A, are defined as &/ (4, + a,) and a/(a;+ a,), where
asand a, are the amplitudes of the fast and slow components of the
bi-exponential fits (Tzounopoulos et al., 1998). Values are means =
SEM (n = 7-8).

and 50% rise time from —72 to —38 mV and 172 to 26
ms, respectively (Fig. 3, C and D, bars on left).

As a final test for the role of GCK-3—-mediated phos-
phorylation in CLH-3b regulation, we coexpressed the
channel with a kinase-defective GCK-3 mutant. The cat-
alytic domains of GCK-3 and PASK/SPAK as well as
many other kinases are highly conserved (Hanks and
Hunter, 1995). An essential lysine residue is required
for positioning of the terminal phosphate group of
ATP (Hanks and Hunter, 1995). Mutation of this lysine
(K101) to arginine (K101R) in PASK/SPAK abolishes
catalytic activity (Ushiro et al., 1998; Johnston et al.,
2000; Dowd and Forbush, 2003). We mutated the corre-
sponding lysine (K137; highlighted by asterisk in Fig. 1
B) to arginine (KI137R). As summarized in Fig. 3 B,
GCK-3(K137R) did not inhibit CLH-3b activity. I3
density recorded in cells coexpressing GCK-3(K137R)
was 2-9-fold (P < 0.05) greater than that recorded in
cells coexpressing wild-type GCK-3. Furthermore, GCK-
3(K137R) coexpression failed to shift I g, activation
voltage or slow the channel’s activation kinetics (Fig. 3,
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C and D, bars on right). Taken together, these results
demonstrate clearly that inhibition of CLH-3b by GCK-3
requires the kinase activity of the protein.

GCK-3 Alters a Fast Galing Process in CLH-3b

We derived time constants for hyperpolarization-induced
current activation by fitting current traces with expo-
nential functions during the first 500 ms of hyperpolar-
izing test pulses. In cells where CLH-3b was expressed
alone, voltage-dependent gy i3, activation was well de-
scribed by the sum of two exponential terms describing
fast and slow time constants that differed by a factor of
10-20 (Fig. 4 A). The fractional amplitudes of the fast
and slow time constants were voltage dependent (Fig.
4 B). In contrast, the GCK-3-inhibited current could be
well described by a single time constant similar to the
slow time constant of Iy 113, in cells expressing CLH-3b
alone (Fig. 4). These data suggest that activation gating
in the fully active channel occurs by fast and slow pro-
cesses, and that activation of the GCK-3—inhibited cur-
rent is dominated by a single, slow process that is kinet-
ically similar to the slow process observed when the
channel is expressed alone.

Binding of GCK-3 to CLH-3b Is Required for Channel Inhibition

Delpire and coworkers (Piechotta et al., 2002) demon-
strated that PASK/SPAK binds to cation coupled Cl~
cotransporters via the motif (R/K)FX(V/I). Mutation
of the phenylalanine residue at position 2 in this motif
to alanine abolishes the interaction (Piechotta et al.,
2002). We identified a similar motif, RFLI, in CLH-3b
beginning at arginine 678. This putative GCK-3 bind-
ing domain is located at the beginning of exon 12,
which is present only in the CLH-3b splice variant
(Nehrke et al., 2000; Denton et al., 2004). To test
whether this motif is required for interaction of GCK-3
and CLH-3b, we mutated phenylalanine 679 to alanine
(F679A) and performed yeast two-hybrid analysis using
wild-type and mutant CLH-3b COOH terminus as bait.
Fig. 5 A shows B-galactosidase activity in extracts of
yeast coexpressing the strongly interacting protein
pair TD1 and VA3 (TD1/VA3), the CLH-3b COOH
terminus and the GAL4 activation domain (CLH-3b/
GAL4AD), the wild-type CLH-3b COOH terminus and
the last 178 amino acids of GCK-3 ligated downstream
of GAL4AD (CLH-3b/GCK-3), or the F679A CLH-3b
mutant COOH terminus and the last 178 amino acids
of GCK-3 ligated downstream of GAL4AD (F679A/
GCK-3). Results are expressed relative to yeast express-
ing TD1 and VA3. B-galactosidase activity in CLH-3b/
GCK-3 yeast extracts was ~40% of that observed with
TD1/VA3. The F679A mutation reduced B-galactosi-
dase activity to a level that was not significantly (P >
0.05) different from background levels observed in
CLH-3b/GAL4AD yeast extracts. These results demon-
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Ficure 5. GCK-3 regulation of CLH-3b requires kinase binding
to the channel COOH terminus. (A) Characterization of GCK-3/
CLH-3b interaction by yeast two-hybrid assay. Interaction pairs:
CLH-3b/GAL4AD, CLH-3b COOH terminus and the GAL4 activa-
tion domain; CLH-3b/GCK-3, wild-type CLH-3b COOH terminus
and the last 178 amino acids of GCK-3 ligated downstream of
GAL4AD; F679A/GCK-3, F679A CLH-3b mutant COOH terminus
and the last 178 amino acids of GCK-3 ligated downstream of
GAL4AD. B-Galactosidase activity is expressed relative to the
strongly interacting protein pair TD1 and VA3 (TD1/VA3). Values
are means = SEM (n = 3). *, P < 0.001 compared with CLH-3b/
GAL4AD. f, P < 0.001 compared with CLH-3b/GCK-3. (B) Current-
to-voltage relationships of whole cell currents in cells expressing
CLH-3b(F679A) mutant or CLH-3b(F679A) mutant and GCK-3.
Values are means = SEM (n = 8-9).

strate that the (R/K)FX(V/I) binding motif also medi-
ates the interaction of GCK-3 with CLH-3b.
PASK/SPAK binding to the Na-K-2Cl cotransporter is
not required for regulation (Dowd and Forbush, 2003).
To determine whether GCK-3-mediated regulation of
CLH-3b requires kinase binding to the channel, we co-
expressed the CLH-3b(F679A) mutant with and with-
out GCK-3 and characterized whole-cell C1~ currents.
As shown in Fig. 5 B, whole cell current density in cells
expressing CLH-3b(F679A) alone was not significantly
(P > 0.9) different from cells coexpressing GCK-3 and
the F679A mutant. Mean * SEM activation voltage and
50% rise time at —100 mV in cells coexpressing CLH-
3b(F679A) and GCK-3 were —31 = 0.6 mV and 5 = 0.5
ms (n = 8), respectively, and were not significantly
(P > 0.05) different from those observed in cells ex-
pressing either wild-type CLH-3b (Fig. 2 C) or CLH-

3b(F679A) alone (mean *= SEM activation voltage =
—31 = 0.4 mV; mean * SEM; 50% rise time at —100 mV =
5 * 0.8 ms; n = 9). These results indicate that a physical
interaction between GCK-3 and CLH-3b is required for
kinase-dependent regulation of channel activity.

gck-3 and clh-3 Are Coexpressed in the Worm Oocyte and
Excretory Cell

Data shown in Figs. 2-5 demonstrate clearly that GCK-3
functions to inhibit heterologously expressed CLH-3b
by phosphorylating the channel and/or associated reg-
ulatory proteins. To test whether the kinase plays a
physiologically relevant role in CLH-3b regulation, we
first examined its expression pattern by RT-PCR and
GFP transcriptional reporter methods.

GFP reporter studies have demonstrated that ¢/h-3 is
transcriptionally expressed in the excretory cell, vulval
cells, uterus, hermaphrodite-specific neurons, enteric
muscles, and the first four epithelial cells of the intes-
tine. Expression of the channel is particularly promi-
nent in the excretory cell where it may function in
regulation of whole animal salt and water balance
(Schriever et al., 1999; Nehrke et al., 2000). To assess
the tissue distribution of GCK-3, we generated two in-
dependent transgenic worm strains expressing a gek-3:
GFP transcriptional reporter (termed Pgck-3::GFP) com-
prised of 3.5 kb of genomic sequence 5’ to the gck-3
start site fused to GFP. As shown in Fig. 6 A (right
panel), GCK-3 is also expressed strongly in the excre-
tory cell. No obvious GFP expression was detected in
any other cell type.

Microinjected transgenes generally do not express
well in C. elegans germ cells. To determine if GCK-3 is
expressed in the worm oocyte, we used single oocyte
RT-RCR. As shown in Fig. 6 A (left panel), gck-3 tran-
scripts of the predicted size are present in oocytes. The
coexpression of gck-3 and c¢lh-3 in the excretory cell and
oocyte combined with results from heterologous ex-
pression studies shown in Figs. 2—4 is consistent with
the idea that GCK-3 is a binding partner of CLH-3b and
that it regulates channel activity in vivo.

RNAi Knockdown of GCK-3 Activity Induces Constitutive
Activation of Native CLH-3b

If GCK-3 regulates CLH-3b in vivo, loss of kinase activ-
ity should induce net protein dephosphorylation and
constitutive channel activation. To test this idea, we
patch clamped oocytes isolated from worms micro-
injected with either GFP or GCK-3 double strand RNA
(dsRNA). Control oocytes from GFP dsRNA-injected
worms showed typical basal levels of CLH-3b current
(Fig. 6 B). In contrast, current levels measured at
test voltages between —40 and —100 mV in oocytes
from GCK-3 RNAi worms were 4-60-fold higher (P <
0.001; Fig. 6 B). The activation voltage of I3, in 00-

120 Regulation of CIC Channel Activity by a Ste20 Kinase

0TOSOF ARG RS Bic S S RIS tR PRI o


http://www.jgp.org
http://jgp.rupress.org/

Published February , 2005

A Single B

oocytes Buffer v (mV)

Pgck-3::GFP

e
i

O
o

m ;___$—s§
-100 -‘7/-50/% -20 20 40 60

® GFP dsRNA
404 O GCK-3 dsRNA

12: o/§

10 FiGure 6. GCK-3 regulates CLH-3b ac-
g tivity in vivo. (A) gck-3 and clh-3 are co-
expressed in C. elegans oocytes and the
-104 excretory cell. Left, detection of GCK-3
transcripts in single worm oocytes by

2048~ RT-PCR. Expected product sizes of am-
-30] i plified GCK-3 cDNA and genomic DNA
'02 are 0.8 kb and 3.5 kb, respectively. Tran-
-404 3, scripts were not detected in samples of
= oocyte wash buffer. Right, combined
=0 © GFP dsRNA confocal differential interference con-

trast and fluorescence micrographs
showing expression of the gck-3 tran-
scriptional reporter, Pgck-3::GFP, in the
H-shaped excretory cell. This GFP ex-
} pression pattern was observed in two in-

604 O GCK-3 dsRNA

dependent lines of transgenic worms.
(B) GCK-3 knockdown constitutively ac-
tivates CLH-3b in meiotically arrested
C. elegans oocytes. Whole cell currents
measured in GCK-3 RNAi oocytes be-
tween —40 and —100 mV were signifi-
cantly (P < 0.004) different form those
. measured in control GFP RNAi oocytes.

I Control ~
< [ Swelling 2
E X g 354
~ >
g 5] = 301
o) c
s -40- 5 25
> =
S -30{ T 3 201 E
T 20 2 15
5 5
< 10 &
_ 0 -
GFP dsRNA GCK-3 dsRNA -100

v (::(i/) . Values are means = SEM (n = 8-11).
m GFP and GCK-3 dsRNA injections were
performed in parallel on two separate

groups of worms. (C) CLH-3b activation voltages in oocytes isolated from GFP and GCK-3 dsRNA-injected worms. Values are means =
SEM (n = 8-11). *, P < 0.0001 compared with oocytes from GFP dsRNA-injected worms. T, P < 0.0001 compared with nonswollen GCK-3
RNAI oocytes. (D) Relative swelling-induced whole cell current in GFP or GCK-3 RNAi oocytes. Cells were swollen for 5 min. Values are
means = SEM (n = 5-6). Relative current values were calculated only for test potentials where the current amplitude was measurable.

cytes from GCK-3 RNAIi animals was significantly (P <
0.0001) more depolarized than that in control oocytes
(Fig. 6 C). Increased basal current levels and depolar-
ized activation voltages are consistent with dephosphor-
ylation-dependent CLH-3b activation induced by loss of
GCK-3 kinase activity.

The 50% rise time for hyperpolarization-induced cur-
rent activation at —100 mV was not significantly (P >
0.05) altered by GCK-3 knockdown (unpublished
data), suggesting that disruption of gck-3 expression
only partially activated CLH-3b. Consistent with this, we
observed that swelling GCK-3 RNAi oocytes for 5 min
further activated I g3, by 5—10-fold (Fig. 6 D; n = 5).
In sharp contrast, swelling GFP RNAi oocytes for 5 min
activated I g, by 17-35-fold (Fig. 6 D; n = 6). The
rates of swelling-induced I3, activation were not sig-
nificantly different (P > 0.1) for GFP and GCK-3 RNAi
oocytes (mean = SEM rates of Iy, activation at —100
mV in GFP and GCK-3 RNAi oocytes were —0.74 *
0.13 pA/pF/s and —0.47 = 0.05 pA/pF/s; n = 5-6).
Taken together, these results indicate that knockdown
of GCK-3 expression partially activates CLH-3b in the
oocyte. Partial channel activation may be due to incom-
plete knockdown of gck-3 expression and/or the exist-
ence of other kinases with redundant functions. In
yeast for example, Ste20 and the related Cla4 kinase
function redundantly in certain cellular processes (e.g.,
Cvrckova et al., 1995; Weiss et al., 2000; Chiroli et al.,
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2003). Furthermore, at least two type-1 phosphatases,
GLGC-7a and GCL-7B, mediate dephosphorylation events
that activate CLH-3b in the worm oocyte (Rutledge et
al., 2002).

DISCUSSION

CIC-0, the first member of the CIC superfamily of
voltage-gated anion channels, was identified in 1990
by expression cloning from the Torpedo electric organ
(Jentsch et al., 1990). Members of this gene family have
since been found in organisms ranging from bacteria
to mammals (Jentsch et al., 2002). Much of our under-
standing of the physiological roles of CIC channels has
come from knockout studies in mice and identification
of disease-causing mutations in humans (Jentsch et al.,
2002; Haug et al., 2003).

Little is known about how CIC channels are regu-
lated. Phosphorylation events have been shown to
modulate the activity of various CICs, but the signaling
pathways involved and the physiological context under
which this regulation occurs are uncertain. For exam-
ple, human CIC-1 expressed heterologously in HEK293
cells is inhibited by phorbol ester-induced activation of
PKC (Rosenbohm et al., 1999). Dialysis of cells patch
clamped in the whole-cell mode with autonomously ac-
tive calcium/calmodulin-dependent protein kinase II
(CaMKII) activates heterologously expressed human
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CIC-3 (Huang et al., 2001). Guinea pig CIC-3 is inhib-
ited by phorbol esters or cAMP in PKC and PKA-depen-
dent manners (Duan et al., 1999; Nagasaki et al., 2000).
CIC-2 expressed in Xenopus oocytes is inhibited by injec-
tion of activated p34cdc2/cyclin B, which also phos-
phorylates the channel protein in vitro and in cell-free
oocyte microsome assays (Furukawa et al., 2002).

We have used the genetically tractable model organ-
ism C. elegans to further characterize the physiological
roles of CIC channels and to define the mechanisms
and signaling pathways by which they are regulated.
CLH-3b is a member of the CIC-1/2/Ka/Kb subfamily
and is functionally expressed in the nematode oocyte
(Rutledge et al., 2001, 2002; Denton et al., 2004). In
nonmaturing oocytes, CLH-3b is activated by cell swell-
ing, but the channel appears to play no role in regula-
tory volume decrease (Rutledge et al., 2001).

The physiologically relevant regulator of CLH-3b ac-
tivity is the oocyte meiotic cell cycle (Rutledge et al.,
2001). Adult C. elegans hermaphrodites possess two
U-shaped gonad arms connected via spermatheca to a
common uterus. Oocytes form in the proximal gonad
and accumulate in a single-file row of graded develop-
mental stages. Developing oocytes remain in diakinesis
of prophase I until they reach the most proximal posi-
tion in the gonad arm where meiosis resumes, a process
termed meiotic maturation (for review see Hubbard
and Greenstein, 2000). Meiotic maturation triggers ac-
tivation of CLH-3b (Rutledge et al., 2001) and induces
ovulation (for review see Hubbard and Greenstein,
2000). CLH-3b plays a role in regulating ovulation
by controlling the contractile activity of myoepithelial
sheath cells that surround and are coupled to oocytes
via gap junctions (Rutledge et al., 2001; Strange, 2002;
Yin et al., 2004).

Both swelling- and meiotic maturation-induced acti-
vation of CLH-3b are mediated by serine/threonine de-
phosphorylation (Rutledge et al., 2002). The identifica-
tion of GCK-3 as a kinase that binds to and functions to
inhibit the channel is consistent with known physio-
logical roles of the Ste20 superfamily. Ste20 kinases
play important regulatory roles in cell cycle—-dependent
physiological processes and cellular stress responses
(Dan et al., 2001). Of particular relevance for CLH-3b
regulation are observations demonstrating that yeast
Ste20 kinase is activated by hypertonic cell shrinkage
(Raitt et al., 2000) and that X-PAK activity functions to
maintain Xenopus oocytes in meiotic arrest (Faure et al.,
1997, 1999; Cau et al., 2000). CLH-3b is inhibited in
meiotic cell cycle—arrested oocytes and by oocyte shrink-
age (Rutledge et al., 2001).

As shown in Fig. 4, hyperpolarization-induced activa-
tion of CLH-3b expressed alone occurs via fast and slow
gating processes, whereas a single, slow process domi-
nates voltage-dependent activation of GCK-3-inhibited

channels. Fast and slow time constants have been de-
rived from exponential fits of gating relaxations in CIC-1
and CIC-2 (Saviane et al., 1999; Bennetts et al., 2001;
Zuniga et al., 2004). Fast relaxations are thought to re-
flect opening and closing of individual protopore gates
that operate independently of one another and on a
millisecond time scale. Slow relaxations have been as-
cribed to the function of a common gate that opens
and closes both protopores simultaneously.

Structural studies on bacterial CIC homologues as
well as functional studies on CIC-0 and CIC-2 suggest
that a glutamate residue positioned in the extracellular
opening of each protopore functions as the fast pro-
topore gate (Dutzler et al., 2003; Niemeyer et al.,
2003). With the exception of CIC-Ka and CIC-Kb, this
glutamate residue is conserved in all CIC channels, in-
cluding CLH-3b (Denton et al., 2004). In the absence
of CLH-3b single channel measurements, we do not yet
know if hyperpolarization-induced activation of CLH-
3b is regulated by fast and slow gating mechanisms
analogous to those of other CICs. It is nevertheless in-
teresting to speculate that the fast gating process in
CLH-3b represents opening of the protopore gate,
and that GCK-3-mediated phosphorylation inhibits this
process. Interestingly, Dutzler et al. (2002) showed that
the a-helix immediately preceding the intracellular
COOH terminus of bacterial CIC channels is a struc-
tural component of the protopore. They speculated
that the COOH terminus could therefore provide a di-
rect route for regulating channel gating by intracellular
signaling events.

The binding of GCK-3 to the COOH terminus sug-
gests that this part of the channel could be a target of
regulatory phosphorylation. If this is the case, phos-
phorylation-dependent changes in the structure of the
COOH terminus may regulate channel activation by
regulating the protopore glutamate gate. Detailed stud-
ies are currently underway to elucidate the biochemi-
cal, structural, and biophysical mechanisms underlying
GCK-3-mediated inhibition of CLH-3b.

Delpire and coworkers (Piechotta et al., 2002) dem-
onstrated that the GCK-3 homologues, PASK/SPAK
and OSRI (Fig. 1 B), bind to swelling-activated K-Cl
and shrinkage-activated Na-K-2Cl cotransporters. Acti-
vation of K-Cl and Na-K-2Cl cotransporters is mediated
by serine/threonine dephosphorylation and phosphor-
ylation, respectively (Haas and Forbush, 2000; Lauf and
Adragna, 2000; Russell, 2000). Compelling evidence
suggests that a common volume-sensitive kinase medi-
ates cell volume-dependent regulation of both cotrans-
porters (Lytle, 1997, 1998; Lytle and McManus, 2002).
Dowd and Forbush (2003) have shown recently that
PASK/SPAK functions in shrinkage-induced activation
of the Na-K-2Cl cotransporter NKCCI. These results,
taken together with our findings, suggest that GCK-3
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and its mammalian homologue PASK/SPAK are them-
selves volume-sensitive kinases or components of a vol-
ume-sensitive kinase cascade.

In many organisms and cell types, cell cycle progres-
sion is linked tightly to changes in cell volume (Potter
and Xu, 2001; Saucedo and Edgar, 2002; Mitchison,
2003). Furthermore, volume-sensitive anion channels
and K-Cl and Na-K-2Cl cotransporters have been impli-
cated in the regulation of cell cycle events, cell growth
and proliferation, and programmed cell death (Russell,
2000; Eggermont et al., 2001; Okada and Maeno, 2001;
Shen et al., 2001, 2003). It is interesting to speculate
that Ste20-type kinases may represent a common link
between cell volume change and the cell cycle.

What regulatory mechanisms could mediate such a
link? During development, the volume of a C. elegans
oocyte increases ~200-fold before induction of meiotic
maturation and ovulation (Hall et al., 1999; McCarter
et al., 1999). Interestingly, we have observed that the
sensitivity of CLH-3b to swelling is inversely related to
oocyte size; channel activation requires much greater
cell swelling in small, early stage oocytes compared with
larger, later stage oocytes (Rutledge et al., 2001). A pos-
sible explanation for these observations is that a reg-
ulatory protein analogous to cyclins, which control
cyclin-dependent kinases (Ekholm and Reed, 2000;
Kishimoto, 2003), may function directly or indirectly to
activate GCK-3. Like cyclins, the intracellular levels of
this putative regulatory protein could vary with the cell
cycle. The simplest hypothesis that would explain our
observations is that the concentration of GCK-3 regula-
tory proteins falls as oocytes grow and develop. Cell cy-
cle- and growth-dependent reduction of GCK-3 activity
below a critical level would lead to net protein dephos-
phorylation and activation of CLH-3b in maturing oo-
cytes. Inhibition of GCK-3 could also participate in the
regulation of meiotic cell cycle progression as has been
proposed for X-PAKs in Xenopus oocytes (Faure et al.,
1997, 1999; Cau et al., 2000). Oocyte swelling may acti-
vate CLH-3b by artificially lowering GCK-3 regulatory
protein concentration, thereby inhibiting kinase function.
Further studies to address this possibility are warranted.

The regulation of both Cl~ channels and cation-cou-
pled cotransporters by Ste20 homologues is intrigu-
ing and has important physiological implications.
Coordinated regulation of CI~ leaks (i.e., channels) and
pumps (i.e., cotransporters) is essential for efficient
cell volume control and transepithelial ClI- and fluid
transport. In response to shrinkage, cells accumulate
NaCl and osmotically obliged water via activation of the
Na-K-2Cl cotransporter (Haas and Forbush, 2000; Lauf
and Adragna, 2000; Russell, 2000). Shrinkage-induced
activation of the cotransporter and concomitant inhibi-
tion of CI~ leaks by a common kinase would increase
the rate of net NaCl accumulation and volume recovery.
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Fluid secretion in secretory epithelia such as the sali-
vary gland, intestine, and lung is mediated by activation
of basolateral Na-K-2Cl cotransporters and apical CI~
channels such as CFTR (Haas and Forbush, 2000).
Concomitant activation of the cotransporter and inhi-
bition of basolateral Cl~ leaks would increase net secre-
tory Cl~ and water transport. In this regard, it is in-
teresting to note that gck-3 and c¢lh-3 are not only co-
expressed in the worm oocyte, but also the worm
excretory cell (Fig. 6 A; Schriever et al., 1999; Nehrke
et al., 2000). The excretory cell is a secretory cell re-
sponsible for whole animal fluid excretion (Nelson et
al., 1983; Nelson and Riddle, 1984). Two predicted Na-
K-2Cl cotransporter encoding genes are present in the
C. elegans genome, and both of these predicted cotrans-
porters contain putative PASK/SPAK binding motifs.
It will be interesting to determine whether Na-K-2Cl
cotransporters and clh-3 encoded channels are colocal-
ized in the excretory cell and coordinately regulated by
GCK-3 to mediate fluid secretion.

In conclusion, we have identified a novel Ste20 ki-
nase, GCK-3, that binds to and regulates that activity of
a CIC anion channel. Numerous members of several
channel and transporter families contain Ste20 bind-
ing motifs (Piechotta et al., 2002), suggesting that
Ste20-type kinases may play a widespread role in regula-
tion of membrane transport processes. GCK-3—medi-
ated serine/threonine phosphorylation functions to
inhibit CLH-3b activity in meiotic cell cycle—arrested,
nonswollen C. elegans oocytes. Our studies provide new
insight into physiologically relevant signaling pathways
that control CIC channel activity and suggest novel
mechanisms for coupling cell volume changes to cell
cycle events and for coordinately regulating ion chan-
nels and transporters that control cellular Cl~ content,
cell volume, and epithelial fluid secretion.
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